曰韩无码二三区中文字幕-欧美怡春院一区二区三区-少妇被躁爽到高潮无码久久-av无码精品一区二区三区宅噜噜

行業(yè)信息

設備狀態(tài)監(jiān)測及故障預警技術介紹

發(fā)布時間 :

2021-10-15

點擊:230

隨著工業(yè)技術的快速發(fā)展,工業(yè)企業(yè)的設備正在向自動化、智能化方向發(fā)展,而在設備運行當中常常會因為設備故障導致事故發(fā)生。保障設備安全穩(wěn)定運行、減少安全隱患是企業(yè)提高經(jīng)濟效益的根本。

制造業(yè)企業(yè)設備往往處于工況惡劣、不穩(wěn)定、負載重、連續(xù)運行狀態(tài),由早期故障發(fā)展而導致惡性事故頻頻,為了消除其故障隱患以避免安全事故發(fā)生,企業(yè)迫切需要新手段、新技術來實現(xiàn)故障的早期預警,防止惡性事故的發(fā)生。

sbjc_xtgn_pic1.jpg

目前設備狀態(tài)監(jiān)測及故障預警若干關鍵技術可歸納如下:

(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程。需揭示劣化過程及故障變化演變規(guī)律及發(fā)展特點,分析故障產(chǎn)生機理、發(fā)展原因和發(fā)展模式,構建劣化演變機械動態(tài)特性模型。

(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現(xiàn)典型部件及部位分析。

(3)低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。

(4)故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構建這兩類預測模型相融合的預測模型。

(5)運行狀態(tài)劣化的相關評價參數(shù)、模式及準則。如表征設備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。

云酷科技的設備狀態(tài)物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng)以音頻數(shù)據(jù)為核心,輔以其他設備參數(shù),通過物聯(lián)網(wǎng)技術實現(xiàn)設備狀態(tài)的遠程感知,基于AI神經(jīng)網(wǎng)絡技術,計算并提取設備音頻特征,從而實現(xiàn)設備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。


上一篇:( uwb定位系統(tǒng)優(yōu)勢 快準狠!)      下一篇:( 化工廠人員定位系統(tǒng)解決方案 )